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ON NONCONSERVATIVE PERIODIC SYSTEMS 
CLOSE TO TWO-DIMENSIONAL HAMILTONIAN* 

A.D. MOROZOV and L.P. SHIL'NIKOV 

Time-periodic perturbations of two-dimensional nonlinear Hamiltonian systems are in- 
vestigated. Methods of the analysis of truncated systems are used to establish, in 
the neighborhoods of the individual closed energy levels, the possible types of 
qualitative behavior of the solutions, and their classification is given. The most 
interesting resonance case is studied in detail, and the existence of essentially 
new two-frequency resonance modes is indicated. The passage to the nonresonantcase 
when the exact resonance is detuned, is studied. 

1. Let us consider the system 

X' = aH (5, y)/aY i- Eg (5, Y, Vt), Y’ = -aH (5, Y)/aX + Ef (Xv Y, Vt) (1.1) 

Here H,g,f are functions continuous and Bn-periodic in cp =vt, and sufficiently smooth 
in 5 and y in some region D,v is a parameter and e is a small positive parameter. Let us 
investigate the behavior of solutions of the system (1.1) on the sets D, X s' where Dj (I< 
j< li) denote the compact invariant regions filled with closed trajectoriesoftheunperturbed 
system and not containing the small neighborhoods of the centers, the separatrix contours, the 
parabolic trajectories, nor the "infinity". The solutions of (1.1) in D,X S’ are character- 
ized by the possibility of separating the variables into the "rapid" and "slow". 

Let Dj x S’ be one of the regions in which Dj = ((5, y) :hjl < H (x, y) < hj,, h,,, h,, = con&}. 
In what follows, we shall omit the subscript j. Using a canonical transformation related to 
the passage to the action I-angle 8 variables, we can transform the system (1.1) inthis re- 
gion to the form 

I' = E (fQ’ - g&‘;) = EFI (I, 8, CfJ) (1.2) 

8’ = o (I) + e (-~XI’ + gYr’) = 0 (0 + eF, (I, ‘3, cp) 

The functions F,,, (Z, 0, cp) are 2n -periodic in cp = vt and 8. The phase space of the 
system (1.2) is a direct product K X T2 where K denotes the interval (Z, = Z @I), Z, = Z @,)I 
while TZ = S’ x S’ is a two-dimensional torus. In addition to (1.21, we consideraaauton- 
omous system defined on the ring K x S’ 

obtained from the system 

after passing 

I’ = ah%Y + Eg (I, Y), Y’ = -aHfaX + &f (2, Y) 

to the variables Z and 0 and averaging over 0. Here 

2c *n 

I’ = E& (z), 8’ = a (z) + EQ (I) (1.3) 

(1.4) 

Q (4 = & s s Fz v,e, $9 dv de 
0 0 
t!n 

WI/)=&~ g(x$yvcp)dtF, f(xTY)=&qf(x,y,rp)dp 
II 0 

We assume that the generating Poincard-Pontriagin equation 

B, (I) = 0 

l Prikl.Matem.Mekhan.,Vol.47,No.3,pp.385-394,1983 

(1.5) 
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has at most a finite number of real roots which are all simple. This implies that 

where I, is a root of the equation (1.5). From (1.5), (1.6) and the small parameter method 
it follows that for sufficiently small a#0 the limit cycles of the system (i.4) are coarse. 
The problem of investigating the system (1.2) is equivalent to the study of the mapping T, of 
the plane Q = 0 onto the plane cp = 2x: 

When e=O, all closed curves I = const of the mapping To are invariant, with the Poincare 
rotation number equal to 2nolv. If this number of rotation is commensurate with 2.7. i.e. 
if 0 = (q/p)v, q,p are integers, then the level is called resonant and denoted by i=I,,, 
otherwise the level I = const is called nonresonant. Consider the mapping T,. The small 
parameter method implies that if the generating equation 

has a simple root f3 = 6*, then periodic points are generated from the level I = I,,. The in- 
itial system (1.1) has a stable solution 2xp -periodic in cp corresponding to the values I = 
I,, 8 = 8, , provided that 

c(I,,,8,) =Ao(l(~,,, 8,) + Que't 1 ,8,)<8 pq 

0' (I,,) --I,,' (I,,, 8,) < 0 

If, on the other hand, o'(I&A,,e'(1,,,8,)> 0, then the values I = I,,, 0 = 8* have a periodic 
solution of the saddle type, with the same period. We note that 

and the mean value of ois equal to B,. If the level I = I, is nonresonant and I, is a root 
of the equation (1.51, then under the known conditions a closed invariant curve of the mapping 

T, /l/, stable at eB, (I,)< 0, exists near this level. 

(1.71 

In the region K x F the system (1.1) usually does not admit an unambiguous study by 
means of the method of averaging. For this reason the investigation of the system (1.2) in- 
volves the analysis, in a certain ~-dependent neighborhood Uof every individual level 1 ?= 

coast, followed by description of the behavior of the solutions in KX 2'2. A similar approach 
was used in /2,3/ as investigation of Duffing type equations and also /4/ in the first conser- 
vative approximation to the equation A" = eF(@', 8, vt) where F is a function 2n -periodic in H 
and a function q= vt. 

Below we study the structure of solutions in small ~-dependent neighborhoods of the in- 
dividual levels I = con&. We concentrate our attention on describingthenonlinearresonances 
and their bifurcations. The condition B,(I,) +O enables us to assert that the second order 
approximation of the method of averaging is nonconservative. We note that if the function 

a@,I,,) is sign definite and equation (1.5) has no real rccts, then the study of such reson- 
ances in the conceptual plane is analogous to that carried out in /3/ but in the presence of 
real roots in the equation (l-5), then is in /2/. If, on the other hand, the function c has 
a variable signature, then essentially new two-frequency modes may exist in the system (1.1). 
We also study the degenerate resonances I = I, 

d’o(I,)ldI*=O. r-=1,2 ,..., m (1.8) 

dm+‘w (I,) /I dim+’ + 0 



(Similar resonances can exist in cells the boundaries of which include two separatrix contours). 
We use the method of averaging /5,6/, as well as those of the qualitative theoryandthetheory 
of bifurcation of dynamic systems on a plane /7-g/. 

2. The problem of reducing the system (1.2) in the neighborhoods of the individuallevels 
to a more convenient form, can be split into four cases: lo. 
I,, - c 1/F< I < I,, + c fi, 0 .< 0 < 2n) 

Intheneighborhoods UG = ((I, 6) : 
of the order of fi in I of the resonant nondegen- 

erate levels I = I,,; 20. In the neighborhoods of the order of E’/(“‘+~) in I of the resonant 

degenerate levels; 3O. In the neighborhoods of the order of fi in I of the nonresonant non- 
degenerate levels; 4O. In the neighborhoods of the order of sl/fm+O) in I of the nonresonant 

degenerate levels. 
lo. System (1.2) is reduced to the form /lo/ 

u' = u-k, NJ. I,,) + $0 ($3 I,,) u -i- 0 (WY 
(2.1) 

where 

(2.2) 

is a function 2nip -periodic in $ while o ($, I,,) is given by (1.7). Terms of the order of 
p3 in (2.1) depend on u,$ and 'p and are 2n- and 2np -periodic in II, and 'p respectively. 

According to /3,10/ the passage from (1.2) to (2.1) can be carried out in three stages: 1) 

(1, 6) -+ (k @), 2) (h, a)+ (W, $), 3) (w, cp) + (u,$) , and here, in contrast to /3,10/, inthe first 
stage we carry out the following identity substitution on the torus ((6, cp)mod 2n) : 

1 = I,, + pk 8 = @ + qqdp 
20. The substitution 

1 = IPp + E'h, 0 = '#' + q$'/p, S = I/(, + 2) 

reduces the system (1.2) to the form 

h' = &'-SF1 (I pQ' C-D + W/P* (P) + EFll’ (I,,, @ + W/P, d h + 0 (El+9 

W = +‘bn,hm+l + E h,,+,hm+2 + F, (I,,, Q, + qq/p, q)) + 0 (@+a) 

Further, following lo we arrive at the system 

u’ = &‘-’ (An, (‘44 I,,) + Bo (I,,)) + E (PO, (9, I,,, + BI (I&) u + 0 (El+*') 

I#’ E E1--sb&“+l + E (bm+lum+z + Qo (q, I,,)) + 0 (cl+*) 

(2.3) 

The terms 0 ($+s) depend on IL, $, cp; b, = dm+’ o (I,,p)/dIm+l (m + I)!, b, = b; B,, PO*, Q. satisfy the 
condition B,+ P,, i dQ,ld$ = CT. 

3O. Let the level I = I, be nondegenerate and nonresonant. Carrying out in (1.2) the 
substitution I = I, +ph, we arrive at the system 

h' = PF, (I,, 6, cp) + 0 (pz), 8' = o* + @h + 0 (pa), 01 = o (I,) (2.4) 

Expanding the function F, into a double Fourier series (Nis a given number) 

and passing in (2.4) to the variable u according to the formula 

eiW3+mW 

we arrive at the system 

u’ = p (B, (I,) -I- RN (I,, 0, CPN + 0 Wh 8’ = co* + pbu + 0 (L4 

(2.5) 

(2.6) 

(2.7) 
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We know that the substitution (2.6) with N=ca is usually divergent, and we shall call the 
case of divergent substitution irreducible. The cases of convergence (e.g. if the ratio w* \' 
is poorly approximated, in the accepted sense of the term, by rational numbers, or if the 
perturbation Can be represented in the form of trigonometric polynomials in C$ /l/), shall be 
called reducible. 

40 . Lastly, let the level 1= I, be degenerate and nonresonant. Then the system (1.2) 
reduces to the form 

u' = sl-@ (B, (I*) + RN (I,, 8, cp)) i 0 (E) 8' = @* + .e+*b+m+l -- o (e) (3.8) 

Subsequent investigation depends, essentially, on the following criteria: 
1) The level Z = const is resonant or nonresonant: 2) the autonomous system (1.4) has or 

has not a limit cycle in the neighborhood of the level I = const under consideration; 3: the 
function IS($) is or is not sign definite; 4) the level Z = const is degenerate or nondegen- 
erate. 

3. Let US turn our attention to the qualitative analysis of the behavior of solutions 
of the system (1.2) in the neighborhoods of the individual levels I = const, basing this on 
the analysis of the truncated systems obtained from (2.1), (2.3), (2.7), (2.8) by discarding the 
nonautonomous terms. We begin with the nondegenerate levels, denoting by 10 the root of (1.5) 
B, (I,) = 0. 

Case 1. z = I,, f I,. The case can be suitable split into two subcases. 
la. The equation 

A,*($)$&=0 (3.1) 

has no real roots. In accordance with (2.11, in the U,neighborhood of such levels the 
qualitative behavior of solutions of the system (1.1) is analogous to the behavior of solu- 
tions of the autonomous system (1.4). Such resonant levels are naturally called penetrable. 

Ib. Equation (3.1) has real roots Ip =I$*. In this case the initial system (1.1) has 

periodic solutions, roughly half of which are of saddle type, and the other half are asymptst- 
ically stable when EU($~)< 0. 

Let us consider a truncated system obtained from (2.1) by discarding terms of order 

0 (!9 
U' = y (A,,(+) + B,) + p*u (9) U, $' = pbu i- P%,u" (3.2. 

The system (3.2) is defined on the cylinder (9 mod .2n, u}. However, since the smallestperiod 
of the function A,,($), CT($) is equal to 2nlp, it is sufficient to consider the behavior 
of solutions of the system in the strip (9 mod (2x/p), u}. 

Assertion 1. If the function IS(+) is sign definite, then the truncated system i3.2: 
has no limit cycles. 

Indeed, the absence of limit cycles not enveloping the phase cylinder follows from the 
Bendickson criterion /7/, and of the cycles enveloping the phase cylinder from the condition 

B,# 0. When the fraction (I($) has variable sign and R, # 0, the system 13.2) can have 
only the limit cycles not enveloping the phase cylinder. Therefore, irrespective of whether 

0 (111) is, or is not sign definite, regions exist in the neighborhood C, of the resonant 
levels in question, for the initial conditions, from which the phase point leaves c‘, after a 
finite time, and regions in which the phase point remains in u, at all t+G. m or L' 
- 00. We shall call such resonant levels partially penetrable. From (1.7) it follows that 
c(lp) can be a sign variable function for the parametric systems for which the perturbation 

contains the term amn (vt)zmym, m, n # 0. 

Case 2. I = IV4 = I,. In accordance with the assumption B, (I,)= O,B,(I,)+ U, and the 
autonomous system (1.4) has a limit cycle in the neighborhood of the level in question. In 
this case the truncated system (3.2) assumes the form 

u' = PA,, ($) + p’a (Q) u, $’ = @u + p”‘b,d 

and is close to the Hamiltonian system 

(3.3) 

uL' = VA"* (w), $' = Pbu !3.4) 

Using the first integral 6u?/2 - @,*(IP)@ = const we can establish the topological struc- 
ture of the behavior of the solutions of the system (3.4). When terms of order IL' are taken 
into account, limit cycles can exist in (3.3) enveloping the phase cylinder {II: mod 2x, u}. 
since the “infinity” (1 u 1 = u) is unstable when en, <() and stable when eBI > 0, a strip 
1 u 1 ,<u,, can be separated on the phase cylinder into which all trajectories will converge 
from the outside when En, < 0 , and from which all trajectories will emergewhen c/j, > i). such 
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resonant levels shall be called impenetrable. 
When .sBI (I,,) < 0 , a ring exists in the initial system in the neighborhood U, of the 

level I = I,, is question, into which all trajectories converge as t + Co. Stable and un- 

stable oscillation synchronisation modes i!np -periodic in cp exist within the ring itself. 
When the function o(q) has sign-changing, two types of two-frequency modes are also possible: 
a) the nodes corresponding to the limit cycles of the system (3.3) not enveloping the phase 

cylinder, and b) those corresponding to the limit cycles of (3.3) enveloping the phase cylind- 
er. In the case when o(q) has constant sign, it can be shown (see Sect.4) that no-frequency 
modes referred to above, exist. 

Case 3. The level I= I, is nonresonant and I, # I,. In this case the number N in 
(2.7) is chosen so that maxe,Bl RN ) < I& 11% This leads us to a situation analogous to the 
case la, i.e. such levels are penetrable. 

Case 4. The level I= I, is nonresonant and I, = I,. Here we have B. = 0 and in the 
reducible case the initial system has a two-dimensional invariant torus /l/, and the mapping 
Te has a closed smooth invariant curve. When sB,(I,)<O, the torus is asymptotically 
stable. In the irreducible case a ring can be shown to exist in the neighborhood of thelevel 
I = I, in question (with a boundary depending, generally, on e), into which the trajectories 
of the mapping T, arrive when EB, < 0. 

Next we turn our attention to the degenerate cases, without concerning ourselves with 
the problem of existence of limit cycles in the truncated systems. 

Case 5. I = I,, # 10 and condition (1.8) with m > 1 holds. According to (2.3) the 
behavior of the solutions in the neighborhood U,* of the level I = IPq is describedwith the 
accuracy up to terms of order eltb, s = li(m + 2) by the following truncated system: 

u' = el-' (A,, (1,) i- Br) + a (P,* ($) + B,) u (3.5) 

II.' = Pb,zP+' $ E (bmcl urn+* + Q. (q)), m ), 1 

5a. If the equation A,,($) +- Bo = 0 has no real roots, then the level Z=IP4 is pene- 
trable. 

5b. Let the equation A,,(+) $ B, =0 have real roots 9 =qj. Consider the oonservative 
system 

U' = E’” (Act* ($) + &I), 9. = Et-%,,,UmC1 (3.6) 

The "energy" integral of this system 

b,,,~~"+~/(m + 2) - IA,, ($1) d$ - Bg.p = const 

enables us to construct the phase patterns. We note that the system (3.6) has only the fine 
states of equilibrium, with two zero roots of the characteristic equation. The phase pattern 
depends essentially on whether m is even or odd. When mis odd, we have the degenerate 
states of equilibrium of the "impenetrable crumb" type, while with meven we have topological 
saddles and centers /7/. 

Let us consider the system (3.5). The coordinate u1 of the state of equilibrium is 
found from the equation 

OVUM+’ T IYQO ($j) - E” [ Qo’ ($j) X (PO* ($j) + Bl)/A,’ ($j) ] u + Am+* bm+l= 0 (~3 (3.7) 

and coordinate q coincides, with the accuracy of up to terms of order s'/(m+') , with qj. The 
roots of characteristic equation are equal to 

EU($,)/~ zt (~'a'(~~)/4-A)"' 

A = 0 (9) - E*(m+l)l(m+*)AO*'(~l)b,(m + 1) uIm 

Fig.1 

In accordance with (3.7), the second term in the expression for A is of the order of 8' where 
5. = [2 (m i I)'- ml/@ + l)(m -/- 2). Since *I2 d A < 2, it follows that the term - A is domin- 
ant in the discriminant E2UZ(vj)/4 - A. Consequently, when 
brim states will be coarse foci and saddles. 

&,'(*J # 0, u (Vj) # 0 , the ewili- 
When m is odd and conditions that Qo(+) has 
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opposite signs at the neighboring zeros A, (3) holds, the trajectories of the system ,,3.5; 
may behave in the manner shown in Fig.la. When m is even, the qualitative behavior of the 
trajectories of (3.5) is basically the same as in the nondegenerate case. It follows that LX 
the present case the level Z = I,, is partly penetrable. 

Case 6. z = I,, = I, and oondition (1.8) holds. In this case B, (Z,,) = 0, B, (I,,) # 0. 
Possible behavior of the trajectories of the system (3.6) with B,=O is shown in Fig.lb for 
odd m. Fig.lc shows the oorresponding phase pattern of the system (3.5). We shall call such 
a level impenetrable. 

Case 7. The level Z = I, is nonresonant, Z,#Z, and (1.8) holds. The behavior of 
solutions in the neighborhood u,, of such levels is described, in accordance with (2.81, by 
the following truncated system with the accuracy of up to terms of order O(e) : 

u’ = E’-’ (Bo + RN (I,, 9, cp)), 0’ = w* + ~~-~b,,+“‘+’ C3.F‘) 

This case is analogous to case 3, i.e. the level Z = Z* is penetrable. 

Case 8 .!Phe level Z = I, is nonresonant, I, =I,, and (1.8) holds. Here, as in case 4, 
a ring of width of order t? in Z can be shown, into which the trajectories of the mapping 
converge when eB, (I,)< 0. 

4. Let us bring into (3.2) the detuning factor y defining the deviation of the resonant 
level from the level Z = I,, and consider the passage when y varies from the exact resonance, 
to the nonresonant case. To do this we consider a system on a cylinder 

du/dT = A,, (9) + f~ (a (9) u + y), d$ldT = bu i- pb,u’ (4.1) 

obtained from (3.2) by the time change r = pt and when Bo (Zpp) = (dB, (I,)/ dZ) (Z,, - ZJ = py. 
We consider, together with (4.1), the conservative system (3.4) 

du ldz = A,, (II), d$ldT = bu (4.2) 

The separatrices of the saddles of system (4.2) enveloping the phase cylinder {II; mod 2n, u} 
shall be called the outer separatrices. Let us establish the relative distribution of the 
outer separatrices, with terms O(p) taken into account. We use the formula for determining 
the distance A,, = PA, fO(pz) separating the corresponding separatrices of the system (4.1) 

/ll/. We take (4.2) as the unperturbed system, and make in (4.1) the substitution 

$ = 5 +$o - &40*' @JO), u = n (1.3) 

($a is the coordinate of the saddle of (4.2)). As a result, (4.1) is transformed, with the 
accuracy of up to terms of order 0 (9) 1 to the form 

dtlld% = A,, (E + cpo) + P [v + (J (f + %) 11 - Y&R+' (S + %)/Ao*'($,)l (4.4) 

df/dz = bq + pb,q’ 

Clearly, the right-hand sides of the system (4.4) vanish when 5 = n =O, therefore we have, 
in accordance with /ll/, 

(4.5) 

where s(r), n (7) is a solution of the system (4.2) on the separatrix. The integral of the 

system (4.2) yields the following relation connecting n and f: 

Substituting (4.6) into (4.5), we find 

(4.6) 

(4.7) 

Assertion 2. When the function a(q) is sign definite, the resonance is exact and y= 

0, the outer sepratrices are split, i.e. A,#O. Indeed, the lower bound of the integral 

in (4.7) is given by 



333 

?a P 

umin Sl -~(V(5,rp,)-V(O,rp,))]” dS 
0 

which is proportional to the area bounded by the curve (4.6) and the E-axis. When y = 0, 
we can write for /4.1/ the generating Poincarg- Pontriagin equation /lo/ to prove the follow- 
ing assertion. 

Assertion 3. When the function a($) is sign definite, then the system (4.1) with 
.; = 0 has no limit cycles enveloping, or not enveloping the phase cylinder. 

When the function e (N is sign definite, the conditions A* = 0 yield the bifurcation 

values of the detuning factor y = y* corresponding to the presence in the system (4.1) 
(within the accuracy used) or a separatrix passing from a saddle to a saddle, and determined 
by equating the right-hand side of (4.7) to zero. The plus sign corresponds to the region 

q: (A and minus to q< 0. On varying y from yf, a limit cycle 
system (4.1) enveloping the phase cylinder, and from this follows: 

is generated in the 

Fig.2 

a b C 

Fig.3 

Assertion 4. Let ~(1'. I,,) be a sign definite function, and let us assume for defin- 
iteness that so< 0. Then yp4 = 1 y* ( $0(p) can be found such that 1) when y> ypp, then the 
system (4.1) has a stable limit cycle enveloping the phase cylinder {I$ mod 2n, a}; 2) when 

I‘= s19r the limit cycle becomes "in-bedded" in the separatrix contour rp+ consisting of P 
saddles and outer separatrices passing from saddle to saddle, with the remaining unstable sep- 
aratrices of the saddles tending, with t+oc, to stable foci; 3) when -ypq<y< yp9 no limit 
cycles enveloping the phase cylinder exist; 4) when y = -ypn a contour rp- forms composed 
of p saddles and outer separatrices and differing from T,,+ In the direction of the passage 
around the phase cylinder and its position on it; 5) when y< - yFP, a stable limit cycle 
exists enveloping the phase cylinder. 

Fig.2 illustrating the above assertion shows the phase patterns of the system (4.1) in 
the strip {II mod (In/p). U) for various values of detuning y, and Fig.3a depicts the phase 
pattern corresponding to Fig.2 (1) in initial variables r and y for p = 3 and q,= 1. 

Let us turn our attention to the case of the sign variable function 0 (V). The system 
(4.1) is close to the Hamiltonian system (4.2), with the Hamiltonian 

H, (II', u) = bu?/2 - T- (J) 
We introduce, in the region of rotational motions (H, = h, h> V(t$J) of the system (4.2), the 
action J-angle a variables, write the system (4.1) in terms of these variables, and average 
it over the rapid variable a. This yields the equation 
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hu*u='l da=$- -$ + -&- 1 u (4) (I, a)) u2(J, a) da, Q - da/d7 
0 

The plus sign corresponds to the upper half-cylinder, and the minus sign to the lower. The 
equation P, (3) = 0 is a generating equation; simple real roots I, of this eauation determine 
the coarse limit cycles in the system (4.1) lyinq near the levels H. = h(J,). From (4.8) 
follows that when y = 0 thenumberofthelimitcyclesof (4.1) ontheupperhalf-cylindercoincid- 
ing with the number oflimitcyleson the lowerhalf-cylinder (Fig.3b). Further, ypq*>O exists that 
when Iyl> yPP*, then the system (4.1) has asinglecycleonly. In concrete cases the formula (4.8) 
enablesustosolvetheproblemofzeros of thegenerating function p0 (79 Y) dependingonthevalues 
oftheparameter y, andthusobtainthemodificationofthephasepatternof (4.1) in the region of 
"rotational motions". We note that in the region of "oscillatory motions" of (4.1) the gener- 
ating equation is independent of y. 

5. In conclusion we give an example of the system 

Se = y, y' = -t + z.3 + e [(6 -+ z 60s t) y + fi sin tl (5.i) 

for which the autonomous system (1.4) has no limit cycles. In spite of this we find that 
in the neighborhood U,, of the levels I=(,, (p is odd and q= 1) the system (5.1) has, for 
certain definite valuesofthe parameters 6 and $ , two-frequency resonant modes corresponding 
to the limit cycles not enveloping the phase cylinder of the system (3.2) (see Fig.3c where 
p = 3). 
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